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Abstract

Background: Heart failure is one of the leading causes of hospitalization in the United States. Advances in big data
solutions allow for storage, management, and mining of large volumes of structured and semi-structured data, such
as complex healthcare data. Applying these advances to complex healthcare data has led to the development of
risk prediction models to help identify patients who would benefit most from disease management programs in
an effort to reduce readmissions and healthcare cost, but the results of these efforts have been varied. The primary
aim of this study was to develop a 30-day readmission risk prediction model for heart failure patients discharged
from a hospital admission.

Methods: We used longitudinal electronic medical record data of heart failure patients admitted within a large
healthcare system. Feature vectors included structured demographic, utilization, and clinical data, as well as selected
extracts of un-structured data from clinician-authored notes. The risk prediction model was developed using deep
unified networks (DUNs), a new mesh-like network structure of deep learning designed to avoid over-fitting. The
model was validated with 10-fold cross-validation and results compared to models based on logistic regression,
gradient boosting, and maxout networks. Overall model performance was assessed using concordance statistic. We
also selected a discrimination threshold based on maximum projected cost saving to the Partners Healthcare
system.

Results: Data from 11,510 patients with 27,334 admissions and 6369 30-day readmissions were used to train the
model. After data processing, the final model included 3512 variables. The DUNs model had the best performance
after 10-fold cross-validation. AUCs for prediction models were 0.664 ± 0.015, 0.650 ± 0.011, 0.695 ± 0.016 and 0.705
± 0.015 for logistic regression, gradient boosting, maxout networks, and DUNs respectively. The DUNs model had
an accuracy of 76.4% at the classification threshold that corresponded with maximum cost saving to the hospital.

Conclusions: Deep learning techniques performed better than other traditional techniques in developing this EMR-
based prediction model for 30-day readmissions in heart failure patients. Such models can be used to identify heart
failure patients with impending hospitalization, enabling care teams to target interventions at their most high-risk
patients and improving overall clinical outcomes.
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Background
As of 2013, heart failure affects (HF) 5.7 million Ameri-
cans with annual costs of $30.7 billion [1]. It is one of
the leading causes of hospitalization in the United States
(US), particularly in patients aged 65 years and above
[2]. 1 in 4 heart failure patients are readmitted within
30 days of discharge, and risk-adjusted all-cause re-
admission rates declined only slightly from 2009 (20%)
to 2012 (19%) in Medicare beneficiaries [3].
In recognition of this troubling trend, the Center for

Medicare & Medicaid Services (CMS), the largest payer
for medical services in the US, instituted penalties for
hospitals with excess readmissions for heart failure. This
policy change resulted in a shift from the traditional
model of fee-for-service to value-based care [4]. In re-
sponse, major hospitals and healthcare systems have been
implementing strategies to decrease risk of readmission
following hospital discharge. The outcomes thus far are
encouraging: a pre-post analysis of changes in readmission
rates before and after Medicare’s Hospital Readmissions
Reduction Program (HRRP) showed that HF-specific
risk-standardized readmissions decreased after HRRP by
84.7 per 10,000 discharges per year (compared with an in-
crease of 5.1 per 10,000 discharges per year before HRRP)
[5]. However, as of 2013, the rate of all-cause readmission
for heart failure index admissions was still 23.5%, the high-
est rate of readmission following an index stay for a
high-volume condition (higher than that for chronic ob-
structive pulmonary disease (20.0%), pneumonia (15.5%),
and acute myocardial infarction (14.7%) [6].
To control rising hospitalization cost and improve out-

comes in HF management, an area of promise is predict-
ive analytics. Within healthcare, prediction models may
be used to develop disease- or event-related risk assess-
ment tools. While advances in big data solutions now
allow for storage, management, and mining of large vol-
umes of structured and semi-structured data such as
healthcare data, leveraging these advances to build pre-
diction models in healthcare poses challenges. Health-
care data is notoriously noisy and heterogeneous [7],
existing in multiple databases across even a single
healthcare delivery system. However, big data analytics
tend to be tolerant of poor data quality, though applica-
tions are naturally more valid and clinically useful when
applied to higher quality data [8]. Additionally, methods
such as data mining and machine learning can make use
of all variables available in a data set without presumed
associations between variables or predictive power of
any particular variables. These methods allow for identi-
fication of potentially highly predictive variables that
otherwise may have gone unexplored using more trad-
itional methods such as logistic regression.
Despite challenges, and in light of the great need to

improve quality of care and patient outcomes, effort

continues in developing prediction models to assess pa-
tient risk for complications or adverse events [9]. Over-
all, the literature reports modest performances of
predictive models for readmissions in heart failure pa-
tients, with few models demonstrating an area under the
curve (AUC) of ≥0.70 [9, 10]. Citing the mixed results of
readmission prediction models for HF patients which
use traditional methods, recent studies [7, 11–14] are
testing whether machine learning methods, which can
take into account higher-order and nonlinear interac-
tions between predictors, might demonstrate higher per-
formance. Results show modest improvements over
traditional statistical methods when compared directly,
though AUCs demonstrate a comparable range of per-
formance (0.54 [12] to 0.78 [13]). The mixed results of
big data models highlight the need for further research
to add clarity to the existing body of literature, as well as
more approaches to demonstrate the ability to imple-
ment these models (if appropriate) into clinical practice,
and provide more evidence that the application of these
models can translate into improved healthcare quality,
outcomes, and lower healthcare costs.
A great majority of efforts to develop predictive

models frequently rely on structured data. Given the vol-
ume and richness of data available in unstructured clin-
ical notes or reports, machine learning models may
benefit from leveraging text mining tools to enhance the
model. In this paper, we describe the development of a
risk prediction model using structured and unstructured
electronic medical record (EMR) data to predict the risk
of 30-day readmission in HF patients, capitalizing on ad-
mission data available at discharge.

Methods
Aims
The primary aim of this study was to develop a machine
learning model to predict the risk of all-cause 30-day re-
admission for HF patients.
Our secondary aim was to estimate the potential

healthcare utilization cost savings that could be achieved
if a telemonitoring intervention is selectively offered to
patients at high risk of 30-day readmission.

Design
This retrospective study used de-identified structured
and unstructured patient data from the EMR of a large
healthcare delivery network, applying a deep learning
method to develop a model to predict the risk of 30-day
readmission for HF patients discharged from a hospital
admission. Records included in the derivation dataset
were from HF patients who were discharged alive from
an inpatient hospital admission between 2014 and 2015.
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Settings
All study data were generated from inpatient and out-
patient encounters which took place within the Partners
Healthcare System (PHS), a not-for-profit network of
seven major hospitals, including two large academic cen-
ters in the Boston Metro area, and several community
health centers across eastern Massachusetts. To be in-
cluded, all patients had to have had at least one HF hos-
pital encounter and have been discharged alive from an
inpatient encounter (i.e. admission) at least once from
any PHS facility.

Data sources
There are 2 sources of data for this study: i) Enterprise
Data Warehouse (EDW): The EDW aggregates struc-
tured data from multiple PHS source systems – clinical,
operational, financial, and claims – to create a consistent
view of data collected across these systems; ii) Research
Patient Data Repository (RPDR): The RPDR is a central-
ized clinical data warehouse that gathers structured and
unstructured data from multiple hospital EMR systems
and stores it in one place. Data content includes demo-
graphic and clinical data only; it does not include oper-
ational, financial, or claims data.

Data selection
To be considered a ‘HF patient’ in this study, we consid-
ered patients who were aged 18 years or older and diag-
nosed with heart failure as designated by any hospital
encounter with a principal diagnosis of HF (International
Classification of Diseases (ICD)-9 Codes: 402.01, 402.11,
402.91, 404.01, 404.03, 404.11, 404.13, 404.91, 428.xx)
anytime between fiscal years 2011-2015 (Oct 2010 –
Sept 2015). Medical records were extracted for those pa-
tients who were discharged alive from an inpatient ad-
mission at least once anytime during the study period:
fiscal years 2014-2015 (Oct 2013 – Sept 2015).
Qualifying patients were identified using the above cri-

teria with no methods applied to balance the readmis-
sion ratio of the patient populations. We then extracted
the following structured data elements: demographics,
hospital utilization information, diagnoses, procedures,
labs, and medications; and the following unstructured
data elements: physician notes and discharge summaries.

Outcomes
The outcome of interest was all-cause 30-day readmis-
sion. Every hospitalization was designated an index ad-
mission with potential for a readmission. An index
admission may be flagged as having a 30-day readmis-
sion if the number of days between discharge of the
index admission and its subsequent readmission is
≤30 days. Not all index admissions have readmissions.
Readmissions may themselves be index admissions if the

readmission is followed by a subsequent readmission
within ≤30 days of discharge. Within-hospital transfer,
patient leaving against medical advice, and planned ad-
missions (e.g. chemotherapy, radiation, dialysis, birth/de-
livery) were all excluded from the readmission counts.

Statistical plan
Data from the EDW and RPDR were extracted and man-
aged using structured query language (SQL) within
Microsoft SQL Server Management Studio 2016 (SSMS).
All data was de-identified using the “Safe harbor”
method: removal of 18 identifiers recommended by the
Health Insurance Portability and Accountability Act
(HIPAA), including names, dates, contact information,
ages > 89, ID numbers, etc. of patients or relatives, em-
ployers, or household members of patients, as well as
device identifiers, serial numbers, and policy numbers.
Text-mining techniques were used to de-identify un-
structured data using a combination of SQL Server
Management Studio and SweetScape Text Editor 010.
Statistical analysis of baseline patient social and clinical
demographics was completed using R version 3.2.2 in
RStudio. Vector data generation was completed using
Apache Spark 2.1.0. Text processing was completed
using Python v2.7.13 and Stanford core NLP library
v.3.5.2. Python v.2.7.13 was used to build three predic-
tion models: logistic regression (Scikit-learn v0.18.1),
gradient boosting (XGBoost v0.6), deep learning (Keras
v1.2.1 and Theano v0.9.0 backend). Hyperopt v0.1 library
was used to optimize hyper parameters of the prediction
methods [15].

Feature vector generation and model building
Feature vectors for the prediction model were calculated
by medication information code mapping, HF-relevant
well-known factors (WKF) mapping, text data selection,
and variable coding. To build a high accuracy readmis-
sion prediction model, we developed a new architecture
of deep learning: deep unified networks (DUNs). The de-
tails of each process are explained in the subsections
below.

Medication information code mapping
All names of prescribed drugs were mapped to anatom-
ical therapeutic chemical (ATC) classification codes to
have the active ingredient as an independent variable of
the feature vector. ATC classification codes have five
levels based on efficacy, action site, and scientific fea-
tures. The variables of the feature vector were composed
of the fifth level of the ATC classification code that ex-
presses the active ingredient. First, RxNorm codes (a
naming system developed by the National Library of
Medicine which normalizes US generic and brand drug
names) were mapped by matching drug names from the
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medication master data set to RxNorm drug names. The
RxNorm codes were then converted to fifth level ATC
classification codes by using information about the rela-
tionship between RxNorm codes and ATC classification
codes. Using this strategy, we allocated ATC classifica-
tion codes to 88.9% of the drug names present in the
medication master data set.

Heart failure relevant well-known factors mapping
Our prediction model used WKFs relevant to HF ac-
cording to the American College of Cardiology Founda-
tion (ACCF) and American Heart Association (AHA)
guidelines, and a previous study by Sun J et al. [16, 17].
Codes to create the WKFs were extracted from three
types of data elements: diagnoses, clinical laboratory
tests (labs), and medications.
For diagnoses, diseases associated with HF (e.g. pneu-

monia, hypertension, diabetes mellitus) were identified
from the ACCF/AHA guideline and mapped by their
ICD-9 diagnosis codes. For clinical laboratory tests,
brain natriuretic peptide (BNP) and N-terminal pro
b-type natriuretic peptide (NT-proBNP) codes were used
as well-known biomarkers of HF, in addition to codes
from tests frequently used during hospital stays:
hematological codes such as hemoglobin, white blood
cell count, and alanine aminotransferase (ALT), and
urinalysis codes. All test names were mapped to logical
observation identifiers names and codes (LOINC). For
medications, drugs associated with HF, such as aldoster-
one antagonists and thiazides, were identified according
to the ACCF/AHA guideline and Sun J et al., followed
by mapping based on the ATC classification.

Text data selection and pre-processing
The data set contained two types of unstructured patient
notes – physician notes and discharge summaries –

which contain information about the cause of admission,
the patients’ hospital course, and discharge conclusions
and instructions. Text data were divided into sections by
content header. The contents of each document vary
with each section. We selected sections which were
present in 50% or more of notes posted during inpatient
admissions. Physicians’ notes contained sections per-
taining to patients’ social history (e.g. smoking/drink-
ing history, description of family network). Discharge
summaries contained sections pertaining to hospital
course and treatment; allergic reactions, intolerances
and sensitivities; history of present illness and reason
for hospitalization, and significant findings.
Text data were converted numerically before the

application of machine learning. The bag-of-words
(BOW) model was employed to express the text as
feature vectors of numerals. The feature vectors regard
the frequency of appearance of each word in each
document and the presence/absence of its appearance
(binary). Words were transformed to standard word
form using lemmatization techniques. A part-of-speech
(POS) filtering technique extracted specific words
including nouns, adjectives, and prepositions. Because
words with low frequencies of appearance in the entire
document could have less contribution to the predic-
tion model, we deleted words that appeared less than
or equal to 5 times.

Feature variable coding
Each variable was stored in a unique element of a fea-
ture vector. Target periods, data sources, and value ex-
pressions for each data type were set as shown in
Table 1.
Demographic data included patient characteristic and

socioeconomic variables such as age, race, marital status,
level of education, employment status, and median

Table 1 Target periods and value expressions of each data type

Data Type Data
Source

Target periods Value expression

Demographics EDW Patient-level, no applicable target period Binary (0 or 1); Continuous/discrete
value

Admissions EDW Admission date to discharge date Continuous/discrete value

Diagnoses EDW 2 years pre-discharge date to discharge date Binary of occurrence in the target
period

Labs EDW Admission date to 1 week after admission date; 1 week before discharge date to
discharge date

Number of occurrences in the target
period a

Medications EDW/
RPDR

Admission date to discharge date Number of occurrences in the target
period

Procedures EDW Admission date to discharge date Number of occurrences in the target
period

Notes RPDR Admission date to discharge date b Binary of occurrence in the target
period c

a abnormal occurrences, b except Social History = penultimate to admission date, c except Allergies = number of occurrences in the target period

Golas et al. BMC Medical Informatics and Decision Making  (2018) 18:44 Page 4 of 17



income. Admissions data included variables such as the
dates of admission and discharge, length of stay, re-
admission status, principal diagnosis, admission source,
and discharge disposition. Diagnosis data included the
date of the encounter (inpatient admission or outpatient
visit), number of diagnoses, and ICD-9 codes for up to
20 diagnosis positions where applicable. Labs data in-
cluded the name of the lab test, LOINC, date of the
order, text or numeric result of the test, and
out-of-range status of the result. Medications data con-
sisted of prescription (not claims) information detailing
name of the medication, date of the prescription update,
and dose and strength of the drug. Procedures data in-
cluded the date of the encounter (inpatient admission or
outpatient visit), number of procedures, and ICD-9
codes for up to 20 procedure positions where applicable.
Notes data included the type of note (discharge sum-
mary or physician note), date the note was initiated, sub-
ject of the note, and the text extract corresponding to
the section of interest (e.g. reason for hospitalization,
hospital course, social history, allergies, etc.).
1-of K expression converted the quantitative variables to

elements of the feature vector [18]. To deal with missing
data, interpolation techniques such as zero, median, and
mean filtering were tested and found to be comparable,
thus missing values in each variable were treated as zero.
Additionally, to improve the numerical stability of the pre-
diction modeling, each variable was rescaled in the range
from 0.0 to 1.0 by using min-max normalization.
We reduced the number of variables to avoid overfit-

ting and to decrease computational memory require-
ments. The number of admissions (i.e. samples) and
variables were n = 27,334 and p = 34,621, respectively. As
such, the number of variables p was much larger than
the number of samples n. Such a situation where p> > n
may lead to overfitting [18]. Additionally, a substantially
high amount of GPU memory is required to train a

deep-learning based predictive model with a large num-
ber of variables. To reduce the number of variables (p),
we used the total Kullback-Leibler (KL) divergence
method to evaluate the differences between the 30-day
readmission group and the non-30-day readmission
group [19]. Total KL divergence measures the difference
between two distributions of a variable. If the two distri-
butions are similar, the value of total KL divergence is
small, and the redundant variable can be removed. Vari-
ables with a total KL divergence equal to or higher than
the mean + 1/2 × standard deviation of all variables were
retained for use in the prediction models, resulting in a
final total of 3512 variables.

Deep unified networks (DUNs)
We used artificial neural networks (NN), also known as
deep learning, to build the prediction models. Ravì et al.
introduced six different deep learning architectures: deep
neural network (DNN), deep autoencoder, deep belief
network, deep Boltzmann machine, recurrent neural net-
work, and convolutional neural network (CNN) [20].
Generally, DNN is used for the task of early readmission
prediction [21, 22]. In the case of the DNN architecture,
it is difficult to train the lower inner layers [20]. Yan et
al. showed that the HF readmission prediction perfor-
mances of logistic regression and DNNs were almost
equivalent (logistic regression: AUC 0.657 and DNN
0.662) [22]. So far, it has not been possible to use the
DNN architecture successfully in the areas of computer
vision and natural language processing, where CNNs
have shown impressive results. Addressing this problem,
deep unified networks (DUNs) are a newly developed
architecture of deep learning characterized by the bind-
ing of each network layer’s neurons in a mesh-like form
as shown in Fig. 1. The architecture of DUNs is different
from the six conventional architectures of deep learning
described above. Using vertical and horizontal

Fig. 1 Network architectures of deep neural network and deep unified networks. Demonstrates the network architecture of deep unified
networks (right side) compared to deep neural networks (left side)
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connections of neurons, all inner layers of DUNs can learn
the prediction task from the training data to avoid
over-fitting. The DUNs architecture has horizontally shal-
low and vertically deep layers to prevent gradient vanishing
and explosion. No matter how many layers deep the archi-
tecture is vertically, there are only two horizontal layers
from the data unit nodes to the output node as shown in
Fig. 1. Only the harmonizing and decision units have
learning parameters. If a linear relationship can explain
feature variables and 30-day readmissions, a deep learning
architecture that has many layers is not suitable to avoid
overfitting. On the other hand, if there is a nonlinear rela-
tionship between them, linear models such as logistic re-
gression cannot predict the patient’s risk of readmission
with high accuracy. The DUNs’ attention unit selects the
appropriate inner layers (i.e., data units) depending on the
complexity of the data available. For a more detailed ex-
planation of how DUNs were applied in this present work,
please see Additional file 1: Appendix A.

Evaluation methodology
Prediction accuracy validation
The readmission prediction models were built using lo-
gistic regression, gradient boosting and maxout networks
(existing deep learning), and DUNs (the proposed
method described above). [18]. Gradient boosting is an
ensemble learning composed of weak prediction models
(decision trees in many cases) [18]. A software library of
XGBoost for gradient boosting has a suitable balance be-
tween calculation speed and predictive performance
[23]. Maxout networks are network architectures having
neurons grouped into each inner layer. The architecture
of maxout networks covers a standard DNN with drop-
out. When the number of maxout is one, the maxout
networks are equivalent to DNN that was used by the
previous studies of early readmission prediction tasks [21,
22]. Maxout networks empirically have higher predictive
performance as the number of maxout increases [24].
We used area under curve (AUC) to evaluate the ef-

fectiveness of each prediction model. AUC was deter-
mined by setting thresholds according to the probability
for prediction of readmission within 30 days calculated
from the test data, then calculating true positive (TP)
and false positive (FP) ratios sequentially while shifting
the threshold level serially. Where the threshold level at

which
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FP2 þ ð1−TPÞ2
q

was minimal, the presence/

absence of readmission within 30 days was labeled,
followed by calculation of accuracy, precision, recall, and
fl-measure (fl).
Machine learning techniques have tuning parameters

(such as a number of neurons in deep learning) that are
also called the hyper-parameters [18]. Note that the
hyper-parameters do not contain the learning parameters.

Using all data samples to tune hyper-parameters may
cause overfitting. Nonlinear machine learning, including
gradient boosting and deep learning, are at especially high
risk of overfitting. In this study, hyper-parameter tuning
and prediction model evaluation were carried out by sam-
pling 10% of data at random from the entire dataset,
followed by 100 iterations of optimization of each
technique’s hyper-parameters with the use of the
tree-structured parzen estimator of the hyperopt library
[15]. In each iteration of hyper-parameter optimization,
the mean AUC was calculated by 10-fold cross valid-
ation (10-fold CV) as an indicator of prediction accuracy.
The predictive accuracy of each technique also was evalu-
ated with 10-fold CV. The optimized results of
hyper-parameters in each method are described in the
“Hyper-parameter optimization results” section below.

Cost saving evaluation
PHS offers heart failure telemonitoring (Connected Car-
diac Care Program (CCCP)) to heart failure patients with
recurrent hospitalizations [25]. We evaluated the eco-
nomic benefits that could be generated by using the pre-
diction models for selecting CCCP enrollees based on
readmission risk. Net savings from readmission reduc-
tion were calculated for each classification threshold
based on the receiver operating characteristic (ROC)
curve of each round of 10-fold CV using the following
equation.

Net savings from readmission reduction

¼ Total saved readmission cost−Total CCCP cost

¼ Readmission cost per patient � Number of true positives

�CCCP response rate−CCCP cost per patient

�Number of predicted positives

where readmission cost per patient and CCCP cost per
patient are $9655 and $1500 respectively [25]. CCCP re-
sponse rate is the possibility of successfully preventing a
readmission by applying CCCP to a patient who would
be readmitted within 30 days without CCCP, which is set
to 50% [26]. Number of predicted positives is the number
of index admissions that were classified as positive (i.e.,
30-days readmission occurs) by the prediction model.
We derived the maximum net savings from readmis-

sion reduction and the accuracy at the corresponding
classification threshold for each round of the 10-fold
CV. Then the mean and the standard deviation of the
maximum net savings and the accuracy were derived.

Results
Patient population
Figure 2 below summarizes the patient selection process.
Of 28,031 patients identified as having a hospital en-
counter with HF as the principal diagnosis between 2011
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and 2015, 11,510 (41%) were discharged alive from a
hospital admission during the study period (between
2014 and 2015).
Table 2 below summarizes the patient demographics.

The age distribution was skewed, with 75% of patients
being 65 years of age or older. There were slightly more
men (53%) than women (47%), and the cohort was pri-
marily white (84.5%). A higher proportion of patients
were married or partnered (45.6%), and roughly half the
cohort (51.4%) had no higher than a high school educa-
tion. The majority of patients (57.3%) were retired. Pa-
tients were also likely to be managing more than one
health condition: 77.2% of patients presented to a hos-
pital with one or more comorbidities during the study
period, including hypertension (37.3%), other cardiovas-
cular disease (32.5%), and chronic kidney disease
(26.1%).
In comparing patients who did (30.4%) versus did not

(69.6%) have readmissions, we see the two groups did
not differ significantly in age (p = 0.75), gender (p =
0.74), race (p = 0.16), or marital status (p = 0.07). How-
ever, they did differ significantly in level of education,
employment status, and number of comorbidities (all p
= < 0.01). Specifically, patients with readmissions were
less likely to have had education above high school (p =
< 0.01), less likely to be employed (p = < 0.01) and more
likely to be on disability (p = < 0.01), and more likely to
have ≥3 comorbid conditions.

Inpatient hospital utilization by disease group
For the following analysis, we grouped the principal
ICD-9 codes by disease category according to designa-
tions by the Health Cost and Utilization Project (HCUP)
Clinical Classifications Software (CCS), which character-
izes diagnoses into clinically meaningful categories mak-
ing it easier to see diagnosis data patterns [34]. The top
10 diagnosis categories for the 27,334 inpatient admis-
sions in descending order were as follows: HF (non-hy-
pertensive; 22.3%), dysrhythmia (5.3%), septicemia
(3.9%), device complications (3.7%), pneumonia (4.6%),

hypertension (with complications; 3.3%), COPD (2.8%),
acute renal failure (2.5%), urinary tract infection (2.2%),
and acute myocardial infarction (2.1%). Of the device
complications, 43% were related to cardiac devices.

Readmission rates
To account for the likelihood of a readmission for HF
regardless of index admission cause, we allowed for
all-cause index admissions in our dataset. Of 27,334 in-
patient admissions, 6374 (23.3%) were associated with
30-day readmissions. Of these 6374 admissions with a
readmission, 1448 (22.7%) of the index admissions were
flagged as HF-related, and 1461 (22.9%) of the readmis-
sions were flagged as HF-related, with an overlap of 552
(8.7%) where both the index and its readmission were
HF-related. Therefore, of the 1461 HF-specific readmis-
sions, only 38% had index admissions which were
HF-related.

Common medications, labs, and procedures
The top 5 most commonly prescribed medications for
this population during the study period, determined by
percentage of patients with a prescription record for the
drug anytime between 2014 and 2015, were Furosemide
(60% of patients), Metoprolol (43%), Aspirin (43%),
Omeprazole (39%), and Lisinopril (37%).
The top 5 most commonly ordered lab tests for this

population during the study period, determined by a lab
order date occurring during the target window described
in Table 1, were electrolyte/renal/glucose panels (e.g. es-
timated glomerular filtration rate, glucose, potassium;
25% of labs), complete blood counts (e.g. hematocrit,
white blood cell, red blood cell; 23%), blood differential
absolute/percentage (e.g. nucleated red blood cell,
lymph, eosinophil; 18%), general chemistries (e.g. cal-
cium, magnesium, phosphorous; 8%), and routine coagu-
lation (e.g. prothrombin time, international normalized
ratio, partial thromboplastin time; 4%).
The top 5 most commonly performed principal proce-

dures for this population during the study period,

Fig. 2 Patient selection flowchart. Summarizes the patient selection process
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Table 2 Patient Cohort Demographics

Patient Characteristics Whole Cohort Patients with readmissions Patients without readmissions p-
valueN = 11,510 n = 3502 n = 8008

Age Distribution 0.75

Median (1, 3 quartile) 75.7 (64.3, 84.7) 76.0 (64.4, 84.6) 75.5 (64.2, 84.7)

Gender, n (%) 0.74

Male 6073 (52.8) 1839 (52.5) 4234 (52.9)

Race, n (%) 0.16

White 9490 (84.5) 2872 (83.8) 6618 (84.9)

Black or African American 889 (7.9) 297 (8.7) 592 (7.6)

Hispanic or Latino (all races) 423 (3.8) 141 (4.1) 282 (3.6)

Asian 221 (2.0) 61 (1.8) 160 (2.1)

Other, or more than one race 202 (1.8) 58 (1.7) 144 (1.8)

Unknown (excluded in calculations) n = 285 n = 73 n = 212

Marital status, n (%) 0.07

Married / Partnered 5125 (45.6) 1516 (44.3) 3609 (46.2)

Widow 2360 (21.0) 718 (21) 1642 (21)

Single 2274 (20.2) 715 (20.9) 1559 (19.9)

Divorced / Separated 1069 (9.5) 323 (9.4) 746 (9.5)

Other 412 (3.7) 148 (4.3) 264 (3.4)

Unknown (excluded in calculations) n = 270 n = 82 n = 188

Highest educational attainment, n (%) < 0.01*

Some High School or Less 1117 (12.7) 392 (14.2) 725 (12)

High School Graduate/GED 3418 (38.7) 1127 (40.7) 2291 (37.8)

Some College/Vocational/Technical Program 492 (5.6) 134 (4.8) 358 (5.9)

Graduate of College or Postgraduate School 2911 (33.0) 864 (31.2) 2047 (33.8)

Other 887 (10.1) 253 (9.1) 634 (10.5)

Unknown (excluded in calculations) n = 2685 n = 732 n = 1953

Employment status, n (%) < 0.01*

Retired 4338 (57.3) 1329 (57.7) 3009 (57.1)

Employed a 2067 (27.3) 556 (24.1) 1511 (28.7)

Disability 656 (8.7) 259 (11.2) 397 (7.5)

Unemployed 467 (6.2) 149 (6.5) 318 (6)

Other 49 (0.6) 12 (0.5) 37 (0.7)

Unknown (excluded in calculations) n = 3933 n = 1197 n = 2736

Number of comorbidities, n (%) b < 0.01*

0 2619 (22.8) 578 (16.5) 2041 (25.5)

1 3032 (26.3) 840 (24) 2192 (27.4)

2 2684 (23.3) 841 (24) 1843 (23)

≥ 3 3175 (27.6) 1243 (35.5) 1932 (24.1)
aIncludes part-time and self-employment
bThe following list of comorbidities was selected based on a literature review of comorbidities frequently found in patients with heart failure [27–33], in addition
to clinical opinion of study staff physicians. Please see Additional file 3: Appendix B for a complete list of ICD-9 codes used to identify each condition. Each
condition evaluated is listed here with the percentage of the study population who presented to a PHS facility with the condition as the principal diagnosis for
either an inpatient or outpatient encounter at least once between 2014 and 2015. Hypertension (37.3%), cardiovascular disease (32.5%), chronic kidney disease /
renal insufficiency (26.1%), non-secondary diabetes mellitus (22.8%), anemia (19.2%), chronic obstructive pulmonary disease (9.8%), osteoarthritis (9.1%), mental
health conditions (7.2%), back pain (3.3%), osteoporosis (3.2%), obesity (2.3%)
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determined by a procedure date occurring between ad-
mission and discharge date, were procedures of the car-
diovascular system (e.g. hemodialysis, cardiac catheter,
coronary artherectormy; 36% of procedures), miscellan-
eous diagnostic and therapeutic procedures (e.g.
non-invasive mechanical ventilation, packed cell transfu-
sion, heart ultrasound; 29%), procedures of the digestive
system (e.g. small bowel endoscopy, abdominal paracen-
tesis, esophagogastroduodenoscopy; 13%), procedures of
the musculoskeletal system (e.g. knee replacement, hip
replacement, arthrocentesis; 9%), and procedures of the
respiratory system (e.g. thoracentesis, endoscopic bron-
chial biopsy, insertion of intercostal catheter, 5%).

Feature category variables
After reducing features via total KL divergence (method
described above under Feature Variable Coding), the
final algorithm included 3512 variables represented over
25 feature categories derived from demographic, admis-
sions, diagnosis, procedure, medication, lab, and un-
structured text data. Table 3 shows the number of
feature categories and variables per category for each
data type.

Prediction model evaluation
Hyper-parameter optimization results
The hyper-parameters for the logistic regression were
the coefficient λ of the L1 or L2 norm of the weights,
used to avoid multicollinearity. The logistic regression
models with L1 and L2 norm regularization are equiva-
lent to lasso and ridge regression models, respectively
[18]. For hyper-parameter tuning, λ was varied in the
range [− 15, 0] over the log-uniform distribution (= exp.
(lower, upper)). The best results were obtained using
the L2-norm for λ = 6.931 × 10− 6 with AUC 0.628. In
the case of gradient boosting, Table 4 shows each
hyper-parameter of the XGBoost library and its range
of adjustment. For the parameters not shown in Table
4, gradient boosting used the standard values given in

the library. The best AUC of gradient boost was
0.639.
Table 4 also shows the hyper-parameters of maxout

networks and DUNs. Stochastic Gradient Descent (SGD)
used a learning rate of 0.01 with momentum 0.9, and a
batch size 100. Maxout networks selected three inner
layers with 914 neurons. The inner layers and neurons
of DUNs corresponded to those of the data unit, re-
spectively. DUNs selected five layers with 759 neurons.
Number of maxout is the number of inner layer groups.
The best number of the groups was three. Activation
function is the type of activation function for the inner
layer of maxout networks, as well as the data units and
harmonizing units of DUNs. Maxout networks and
DUNs selected the sigmoid function. Dropout rate is a
parameter of the dropout ratio for the input and the
inner layers. Maxout networks and DUNs selected about
40% defect rate for the input and inner layers. The best
AUC for maxout networks and DUNs were 0.624 and
0.636 respectively.

10-fold cross validation results
Table 5 shows the mean ± standard deviation (std.) for
10-fold CV yielded from evaluation with each technique.
The mean AUCs in Table 5 were calculated from the
area under the receiver operating characteristic
(AUROC) curves shown in Fig. 3, which displays the
curve for each fold of the cross validation for each
method. Only DUNs exceeded AUC 0.70 and marked
the best value in each evaluation. The second-best result
was obtained with maxout networks (AUC 0.695). There
was no large turbulence in the ROC curve of DUNs, and
the true positive rate rose slowly as the false positive rate
rose with each technique. The AUC in the final
10-fold CV evaluation was improved from that in
hyper-parameter tuning for all techniques. In the re-
sults of hyper-parameter optimization, gradient boost-
ing marked the best performance (AUC 0.639),
however, it was the worst performance (AUC 0.650)
in the final 10-fold CV evaluation. On the other hand,

Table 3 Description of contributing variables and results of variable reduction post-processing, by data type

Data Type Major Variables Number of feature
categories

Variable reduction
from ➔ to

Demographics Marital status, education, gender, language 2 39 ➔ 15

Admissions Total cost of index admission, age at admission, cumulative number of 30-day read-
missions, length of stay

2 217 ➔ 53

Diagnoses ICD-9 codes, WKF 4 8101 ➔ 1297

Labs WKF at admission, WKF at discharge 2 94 ➔ 58

Medications RXCUI, Medication name, WKF 7 16,779 ➔ 1107

Procedures ICD-9 codes 1 1833 ➔ 95

Notes Words from: social history, hospital course, hospital reason, allergies 7 7558 ➔ 887

Total 25 34,621 ➔ 3512
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with deep learning, the difference in AUC of 10-fold CV
from that during hyper-parameter optimization was 0.071
higher for maxout networks and 0.069 higher for DUNs.
Figure 4 is a boxplot of the attention unit output for

DUNs. As shown in Fig. 1, the attention unit generates
weights to mix the output values obtained by the inner
units for each input feature vector. The weights indicate
the measure of difficulty of the 30-days readmission pre-
diction task for each patient. DUNs calculate nonlinear
features as a multiple feature combination by increasing
the inner layer (i.e., data units). Thus, the upper layers’
features have a more complex nonlinearity than that of
the lower layers. To improve prediction accuracy, DUNs’
attention unit selects the best features for each patient’s
readmission case. For example, if a patient’s readmission
prediction task does not have a nonlinear relationship
between the input variables and the target variable, the
attention unit generates strong weights for the lower
inner layers. The mathematical mechanism of the

attention unit is further described in Additional file 1:
Appendix A.
Figure 4 plots the attention unit (0.0-1.0; Y axis)

against the layer number (X axis). Layers yielding the
strongest output were layer 3 (mean 0.226 ± std. 0.006)
and layer 6 (mean 0.218 ± std. 0.005). The layer yielding
the lowest output was layer 5 (mean 0.170 ± std. 0.011).
The attention unit output from each layer ranged be-
tween 0.0 and 1.0, with the sum total of output from all
layers being 1.0.

Calculating importance of feature variables
Logistic regression and gradient boosting enable the cal-
culation of the importance of feature variables, as deter-
mined by the frequency with which the variable was
used for decision making during XGBoost. Because the
AUC of logistic regression was higher than that of gradi-
ent boosting, we selected logistic regression to obtain
the importance of feature variables. Logistic regression

Table 4 Hyper-parameters of Gradient Boosting (XGBoost), Maxout networks, and DUNs

GRADIENT BOOSTING (XGBOOST)

Parameter name Distribution and search range Best parameter

learning_rate Log-uniform [−5.0, −0.5] 0.007

max_depth Discrete uniform [3, 25] 5

min_child_weight Discrete uniform [1, 10] 1

n_estimators Discrete uniform [100, 1000] 398

gamma Log-uniform [−10, 0] 0.042

alpha Log-uniform [−10, 0] 0.0003

lambda Log-uniform [−10, 0] 0. 116

subsample Discrete uniform (units of 0.05) [0.5, 1.0] 0.70

colsample_bytree Discrete uniform (units of 0.05) [0.5, 1.0] 0.80

MAXOUT NETWORKS and DUNs

Parameter name Distribution and search range Best parameter

Maxout networks DUNs

Number of epochs Discrete uniform [20, 100] 22 100

Number of inner layers Discrete uniform [2, 5] 3 5

Number of inner neurons Discrete uniform [100, 1000] 914 759

Number of maxout Discrete uniform [2, 5] 5 –

Activation function Random choice from: sigmoid, tanh, softplus, softsign Sigmoid Sigmoid

Dropout rate of: - input layer Uniform [0.001, 0.5] 0.446 0.397

- inner layers Uniform [0.001, 0.5] 0.394 0.433

Table 5 10-fold CV Results

AUC mean ± sd Accuracy mean ± sd Precision mean ± sd Recall mean ± sd f1 mean ± sd

Logistic regression 0.664 ± 0.015 0.626 ± 0.020 0.336 ± 0.014 0.616 ± 0.029 0.435 ± 0.012

Gradient boosting 0.650 ± 0.011 0.612 ± 0.013 0.325 ± 0.008 0.615 ± 0.032 0.425 ± 0.010

Maxout networks 0.695 ± 0.016 0.645 ± 0.016 0.354 ± 0.016 0.631 ± 0.016 0.454 ± 0.016

DUNs (proposed) 0.705 ± 0.015 0.646 ± 0.018 0.360 ± 0.015 0.652 ± 0.036 0.464 ± 0.013
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calculated the absolute values (magnitude) of the learn-
ing parameters (weight coefficients) as the feature im-
portance. Table 6 shows the top 15 most important
features in the logistic regression. More information
about all feature variables (names, data types, import-
ance) will be made available on our website as of July
2018 (HitachiPartnersAIproject.com).

Cost evaluation results
Figure 5 shows the net savings from readmission reduc-
tion, calculated by changing the number of CCCP enrol-
lees along with the classification threshold, assuming the
CCCP enrollees were selected for 2 years from 2014 to
2015, using the ROC curves of 10-fold CV of DUNs,
maxout networks, logistic regression, and gradient boost
models as shown in Fig. 3. The series of R0 to R9 repre-
sent the round number of the 10-fold CV. The 10 circles
in the chart correspond to the point where the net sav-
ings reached the maximum in each round.
Table 7 shows the mean ± standard deviation of the

maximum net savings and accuracy at the classification
threshold corresponding to the maximum net savings
which were derived from the 10-fold CV for each tech-
nique. DUNs demonstrated the maximum net savings at

3.403 ± 0.536 million. The mean ± standard deviation of
the accuracy at the classification threshold that corre-
sponds with the maximum cost savings was 76.4 ± 1.4%.

Discussion
This was a retrospective study which applied deep learn-
ing to structured and unstructured patient data from the
EMR of a large healthcare delivery network to create a
risk prediction model to predict 30-day readmissions in
patients with HF. With an AUC of 0.705, the developed
model performs moderately well, with results within the
upper range compared with previously published
models.
The DUNs AUC marked the best result of 10-fold CV

compared to logistic regression, gradient boosting, and
maxout networks. The mean AUCs in the final 10-fold
CV for deep learning-based techniques were about 0.07
points higher compared to hyper-parameter optimization
results. Hyper-parameter overfitting occurred in gradient
boosting, as demonstrated by its having the highest AUC
in the hyper-parameter optimization results but the lowest
AUC in the final 10-fold CV results. This suggests that
prediction models that have many hyper-parameters need
a particular validation scheme to measure actual predic-
tion accuracy.
For the prediction task of early readmission after

hospitalization for HF, Futoma, et al. and Yang, et al. in-
dependently compared logistic regression with DNN
using three inner layers [21, 22]. For the 10-fold CV re-
sults evaluated by Futoma, et al., the AUC of the DNN
(0.676) was 0.022 points higher than that of the logistic
regression (0.654) [21]. For the 10-times random split
validation results evaluated by Yang, et al., the AUC of
the DNN (0.662) was 0.005 points higher than that of
the logistic regression (0.657) [22]. The 10-fold CV re-
sults in Table 5 show that the AUC of maxout networks
and DUNs were, respectively, 0.031 and 0.041 points
higher than that of logistic regression. This suggests that
if deep learning-based techniques are applied to cases
where a large training data set is available, the

Fig. 3 ROC curves of 10-fold CV. Demonstrates the ROC curve for each predictive modeling technique

Fig. 4 Layer importance of DUNs. Shows the boxplot distributions of
the attention unit output (Y axis) against each layer number (X axis)
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automated generation of feature variables – a capability
unique to deep learning – works sufficiently, yielding
higher accuracy when compared to the other techniques.
Because of the DUNs’ attention unit’s ability to

maximize prediction accuracy by selecting an inner layer
depending on the level of nonlinearity between the input
variables and the target variable for each readmission
case, the architecture of DUNs was more suitable com-
pared to conventional DNNs and other traditional classi-
fiers for this readmission prediction task, due to the
dataset containing both linear and nonlinear relation-
ships. The AUC of 0.665 achieved with logistic regres-
sion solved simpler cases i.e. cases where a linear
relationship could explain feature variables and 30-day
readmissions. The higher AUC of 0.695 achieved with
maxout networks suggests the more complex cases had
a nonlinear relationship. Maxout networks selected three
inner layers (the optimization range is two from five),
suggesting that high-dimensional feature variables with
four or more layers are not necessary for all readmission
cases. As shown in Fig. 4, the DUN attention unit
weights were higher for layers three and six, indicating
that the 30-day readmission events consisted of a mix-
ture of cases which could be explained by the feature
variables of the dimension similar to maxout net-
works, and cases which could be explained by the
high-dimensional six-layer feature variables.
The calculated importance of feature variables (Table

6) highlighted a number of characteristics representative
of symptoms related to HF and its frequent comorbidi-
ties. Four features pertained to pulmonary disease and
distress (#2 and 9: respiratory failure ICD-9 code and

WKF, #4: pneumonia ICD-9 code, and #14: asphyxia and
hypoxemia ICD-9 code), all potentially symptomatic of
COPD, which was present more frequently as a comor-
bidity in the patient segment with readmissions com-
pared to those without (13% vs. 8.5%, p < 0.001). Eight
pertained to renal disease and monitoring (#6 and 8:
acute kidney failure ICD-9 codes, #3, 5, and 12: abnor-
mal sodium, chloride, and albumin labs, #10 and 11: dis-
orders of fluid/electrolyte/acid-base ICD-9 code and
WKF, and #15: hypokalemia), the labs in particular all
being part of a basic renal panel. Chronic kidney disease
was also more represented in the patient segment with
readmissions compared to those without (36.5% vs.
21.6%, p < 0.001). Similarly, features #7 and 14 – diabetes
and anemia – were more represented in patients with
readmissions compared to those without (respectively:
26.1 vs. 21.4%, p < 0.001; and 24.8 vs. 16.7%, p < 0.001).
Following external validation to assure efficacy, the de-

veloped model has promising clinical uses. Healthcare
organizations and providers might consider using such a
model to monitor their patients with HF, to assess their
likelihood of readmission following discharge from an
inpatient admission. Using predictive analytics to select
high readmission risk patients to receive telemonitoring
intervention may help to save on intervention costs to
the hospital. Upon identification of readmission risk, the
patient’s care team may consider an enhanced review of
the patient’s current comorbidities and care plan at dis-
charge, to determine if there are any care gaps which
can be filled to potentially avoid readmission. Addition-
ally, knowledge of one’s risk for readmission may also
provide patients with important decision-making

Table 6 Feature importance ranking of logistic regression

Rank Feature description

1 Cumulative number of 30-day readmissions

2 Presence of acute respiratory failure ICD-9 code

3 Number of abnormal sodium level laboratory tests

4 Presence of pneumonia (organism unspecified) ICD-9 code

5 Number of abnormal chloride level laboratory tests

6 Presence of acute kidney failure (unspecified) ICD-9 code

7 Presence of diabetes (with other specified manifestations) ICD-9 code

8 Presence of acute kidney failure (any) ICD-9 code

9 Presence of respiratory failure, WKF

10 Presence of disorders of fluid electrolyte and acid-base balance (any) ICD-9 code

11 Presence of disorders of fluid/electrolyte/acid-base, WKF

12 Number of abnormal albumin level laboratory tests

13 Presence of asphyxia and hypoxemia ICD-9 code

14 Presence of anemia of chronic illness ICD-9 code

15 Presence of hypokalemia ICD-9 code
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Fig. 5 Projected net savings from readmission reduction by using prediction models to select CCCP enrollees. Shows the net savings from
readmission reduction, calculated by changing the number of CCCP enrollees along with the classification threshold, using the ROC curves of 10-
fold CV of 1) DUNs, 2) maxout networks, 3) logistic regression, and 4) gradient boosting as shown in Fig. 3
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information about their own health, such as adopting
health changes (e.g. diet, medication adherence) or in-
creased communication with their care team.

Strengths, limitations, and challenges
The model was developed on a HF patient population
and included HF-specific WKFs as features, however, the
index event itself need not be HF-specific. By including
all-cause index as well as all-cause readmissions, a
strength of this study may be increased generalizability
of the model to any encounter the HF patient experi-
ences. The readmission rates in this study suggest that
in the event of a readmission, patients are as likely to be
readmitted for HF regardless of index admission as they
are to have an index HF admission. This finding corre-
sponds to insights from previous studies. In an analysis
of re-hospitalization patterns using Medicare claims
data, Jencks et al. found that HF was the most frequent
cause of readmission regardless of index admission diag-
nosis [35]. Similarly, Dharmarajan et al. found a high oc-
currence of HF readmissions regardless of index
diagnosis in their analysis of Medicare claims data, and
further emphasize that any admission places a patient in
a position of heightened vulnerability to a variety of con-
ditions throughout the post-discharge period [36]. In
this study, the finding that cumulative number of 30-day
readmissions is ranked first among logistic regression
feature importance (Table 6) further suggests that any
admission is itself a contributor to readmission risk.
Thus, for patients with heart failure, focusing only on
HF index admissions may result in missed opportunities
to intervene to prevent any readmission, including that
for HF itself. The remaining top-ranked 14 features, as
discussed above, likewise highlight the importance of
monitoring HF patients for their common comorbidities
which also put them at risk for readmission.
Another strength of this study is the inclusion of both

structured and unstructured clinical data. To our know-
ledge, this is the first model to apply deep learning to a
readmission prediction algorithm for heart failure pa-
tients featuring both structured and unstructured data.
By including both structured and unstructured data as
features, the algorithm utilizes more robust data avail-
able on a given patient at the time of discharge, includ-
ing important patient information not generally available
in a structured format, such as patient’s current living

situation (available as social history), and details about
the patient’s course through the hospital during admis-
sion (available through hospital course and history of
present illness).
The vertically deep and horizontally shallow architec-

ture of DUNs prevented overfitting of both the hyper-
and learning parameters, and constructed a high accur-
acy prediction model (AUC 0.705). However, DUNs do
not mathematically calculate the importance of feature
variables. Logistic regression provided the feature im-
portance as shown in Table 6, although it could not
achieve an AUC higher than 0.700. Thus, a limitation of
deep learning, including DUNs, is the lack of ‘explain-
ability’ of the prediction models [37, 38]. The DUNs’
prediction model might contain unknown and nonstan-
dard knowledge which could possibly improve the treat-
ment of HF patients. Future work will focus on
developing explainable deep learning to provide tailored
feedback to physicians.
There are limitations to the study. With regards to al-

gorithm development, KL-divergence filtering - a super-
vised feature selection process - was the first step in our
experiments, meaning the feature selection procedure
had access to the entire dataset to pre-select a subset of
features that were predictive of the outcomes, which
could potentially lead to overfitting (i.e., an exaggerated
performance). Some feature selection methods use super-
vised classifiers such as logistic regression and random
forests. The classifier-based methods have much higher
feature selection ability than the total KL-divergence filter-
ing. There might be a trade-off between the feature selec-
tion ability and the risk of overfitting (i.e. accuracy
decreasing in a test dataset). We used the total
KL-divergence filtering as the conservative approach.
Additionally, we used an external dataset to measure the
overfitting effect of variable preprocessing and prediction
model construction (described in Additional file 2: Appen-
dix C). In this experiment, using the total KL-divergence
method for feature selection did not lead to overfitting.
The AUC of the 10-fold CV described above and of this
external evaluation was 0.705 (as shown in Table 5) and
0.720, respectively. This suggests the DUNs demonstrate
consistent prediction ability in this retrospective study.
We will plan a prospective study to evaluate the use of the
DUNs’ prediction model in our future research.
Missing data is a well-known limitation of utilizing

EMR data for research [8]. Specifically within the PHS
network, until 2014, various facilities used separate EMR
systems, which collect data in different ways. Since 2014,
facilities have updated their EMR to a single system, and
each facility adopted this new EMR on their own sched-
ule. This means that data was collected for patients in
multiple ways across multiple systems over several years.
The treatment of missing values is described above

Table 7 Maximum net savings and corresponding accuracies

Max net savings ($M) Accuracy

DUNs (proposed) 3.403 ± 0.536 0.764 ± 0.014

Maxout networks 3.241 ± 0.561 0.754 ± 0.014

Logistic regression 2.173 ± 0.357 0.750 ± 0.018

Gradient boosting 1.787 ± 0.428 0.739 ± 0.016
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under Feature Variable Coding. An important next step
for this work is to validate the algorithm on current data
now that all PHS network facilities are on the same
EMR system. The increased consistency of data collected
within a single EMR system may have an effect on the
performance of the model.
An additional limitation is that the data contains only

episodes of care which occurred within the PHS net-
work, meaning any admissions to out-of-network facil-
ities are not captured in the data. Relatedly, results may
not be generalizable to other healthcare systems, due to
specifics of the patient population demographics (see
Table 2) and the nature of being a large integrated
healthcare delivery network.
Future work will consider the use of scaled exponen-

tial linear unit (SELU), a recently developed activation
technique [39], to examine its effect on the performance
of neural networks. Additionally, to improve the predic-
tion accuracy of DUNs, future work may consider other
techniques of deep learning such as activation functions
(e.g. SELUs with alpha-dropout [39]), normalization
techniques (ext. batch, weight, and layer normalization
[40]), and faster SGDs (e.g. YellowFin [41], entropy-SGD
[42]).

Conclusions
The value of this model is its ability to identify heart fail-
ure patients with an impending hospitalization regard-
less of cause of index admission. This enables care teams
to target interventions at their most high-risk HF pa-
tients and improve overall clinical outcomes by treating
the whole picture of the patient, not just a single diagno-
sis, which is important in a population with high rates of
comorbidity and readmission. In the next stage of this
project, we aim to validate this model on a new set of
patient data. Like the present study, this new data set
will utilize data generated by PHS patients, but will ex-
clude patient data generated by patients whose data was
included as part of algorithm development or the experi-
ment described in the limitations above and in Add-
itional file 2: Appendix C. Data will also be more recent,
being generated from mid-2017 to present, to assure all
data was collected within a single EMR system, as dis-
cussed in the limitations section above.
Additionally, we will conduct a multi-stage feasibility

and usability study which will examine in detail what in-
puts, sources, computational requirements, and cost are
necessary to functionally implement a predictive tool
such as the one described herein into care provider
workflow. The evaluation will include interviews with
key stakeholders to determine perceived clinical value
and relevance, desired output and user interface, and
how the tool will be integrated into clinical workflow.
Finally, we will conduct a comprehensive impact

assessment to better understand the potential cost sav-
ings and value addition of the tool to an integrated
healthcare network.
Successful implementation of a readmission risk pre-

diction model could give care teams valuable insights to
their patient pool, identifying high-risk patients and per-
mitting the opportunity to target early clinical interven-
tions to these patients with the aim of reducing the
likelihood of readmission.
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